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ABSTRACT

In this paper, we present a new algorithm to implement the homogenized energy hysteresis model with thermal
relaxation for both ferroelectric and ferromagnetic materials. The approach conserves most of the accuracy of
the original algorithm, but enables all erfc and exp functions to be calculated in advance, thereby requiring
that only basic mathematical operations be performed in real time. This is done without a significant increase
in memory usage. Using this approach, execution time of the model has been seen to improve by a factor
of 70 for some applications, whereas the error only increases by five ten thousandths (0.05%) of the saturation
polarization/magnetization. The model with negligible relaxation is also given, as it is used to illustrate some
optimizations. Emphasis is placed on the efficient computation of these models, and theoretical development is
left to the references.

Keywords: Ferromagnetic, ferroelectric, thermal relaxation, thermal activation, real-time, homogenized energy,
hysteresis model

1. BACKGROUND

The homogenized energy framework provides a powerful and flexible mechanism to model ferroelectric and
ferromagnetic hysteresis. In this framework, Gibb’s energy minimization is considered at the lattice level, using
the kernel

P̄ (E) =
E

η
+ PRδ, (1)

where E is the electric field, P̄ is the average polarization, PR is the polarization at remanence, η is the inverse
susceptibility, δ = −1 for negatively oriented dipoles, and δ = 1 for those dipoles with positive orientation. For
magnetic materials, the kernel is

M̄(H) =
H µ0

η
+MRδ, (2)

where H is the magnetic field, M is the magnetization, MR is the magnetization at remanence, and µ0 is the
permeability. In practice, however, η is the result of a data fit, and µ0 is combined with η when performing
the parameter estimation for magnetic materials. This allows the same model to be used for both classes of
materials. For simplicity, this paper refers solely to electric fields and polarizations, with the understanding that
everything presented here applies not only to electric but also to magnetic materials.

To account for material nonhomogenuities and interactions between dipoles, both the coercive field value at
which δ changes and the interaction field between dipoles are assumed to be manifestations of an underlying
distribution. The requirements placed on these distributions are minimal: the coercive field distribution Ec is
strictly non-nonnegative, the interactive field distribution EI is symmetric about 0, and both distributions are
bounded by a decreasing exponential. Including these distributions gives the model

P (E) =

∫ ∞

0

∫ ∞

−∞

vc(Ec)vi(EI)P̄ (E + EI ;Ec)dEIdEc, (3)
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# Inputs: E, Ec, wc, Nc, EI , wI , NI , PR, η, δ
# Output: P

For k = 0 . . . length(E)− 1

P [k] = 0

For i = 0 . . . Nc − 1

For j = 0 . . . NI − 1

If EI [j] + E[k] + Ec[i]δ[i, j] > 0

δ[i, j] = 1

P [k] = P [k] + wc[i]wI [j]((EI [j] + E[k])/η + PR)

Else

δ[i, j] = −1
P [k] = P [k] + wc[i]wI [j]((EI [j] + E[k])/η − PR)

End If

End For

End For

End For

Algorithm 1. Algorithm used to implement the homogenized energy model with negligible thermal relaxation,

where vc and vi represent the distributions of coercive and interaction fields, respectively. For computation, the
distribution of parameters is considered at a predetermined number of quadrature points, and in general the
only restriction on the quadrature method is that an even number of quadrature points are needed on the EI

axis. This assures accurate modelling of the material in the depoled state. Implementing the quadrature method
gives the model

P (E) =

Nc∑

i=1

NI∑

j=1

wc[i]wI [j]P̄ (E + EI ;Ec), (4)

where Nc is the number of coercive field quadrature points, NI is the number of interaction field quadrature
points, wc = vc×coercive quadrature weights, and wI is defined similarly for the interaction field. The [ ] notation
represents array indexing. A complete discussion of the development of this model can be found in [1, 3, 2, 4],
and a pseudocode implementation is given in Algorithm 1 and Table 1.

Algorithm 1 assumes the effects of thermal relaxation are negligible. Considering a material at absolute
temperature T with volume V , the effect of thermal relaxation or activation depends on the ratio kT/V , where
k is Boltzmann’s constant. When this value is very small (equivalently, when the relative lattice volume is
sufficiently large), thermal relaxation is negligible and the previous model may be used. When this is not the

Name Type Description

E Vector Input electric field values – constant sampling rate assumed
Ec Vector Quadrature points for coercive field distribution
wc Vector Quadrature weights times distribution levels for Ec integration
Nc Scalar integer Number of coercive field quadrature points/weights
EI Vector Quadrature points for interactive field distribution
wI Vector Quadrature weights times distribution levels for EI integration
NI Scalar integer Number of interactive field quadrature points/weights
PR Scalar Polarization at remanence – determined from parameter estimation
∆t Scalar Time between successive samples of E
η Scalar Determined from parameter estimation

β Scalar Determined from parameter estimation – Note β =
√
2kT/V

τ Scalar Determined from parameter estimation
ε Scalar Small positive constant, on order of 1× 10−3

f Scalar Extremely small positive constant, on order of machine accuracy limits
δ Nc ×NI matrix Initial state of the material – 1 if domain is positive; -1 if negative
x+ Nc ×NI matrix Initial state of the material – 1 if domain is positive; 0 if negative
r Scalar integer Resolution increase for shifting operations

Table 1. Input parameters used by various algorithms in this paper. Note: some algorithms do not use all parameters.
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case, we consider the Boltzmann relation

µ(G) = Cexp

(
−G(P )V

kT

)
, (5)

where G is the Gibb’s energy. The local average polarization is given by replacing P̄ in [4] with

P̄ (E) = x+P̄+ + x−P̄−, (6)

where x+ and x− are the fraction of moments having positive and negative orientations, respectively. This can
be simplified slightly by realizing that x− = 1− x+. The average polarizations are given by

P+ =

∫ ∞

PI

Pµ(G(P ))dP, P− =

∫ PI

−∞

Pµ(G(P ))dP, (7)

where PI is the inflection point. The moment fractions evolve according to the differential equation

ẋ+ = −p+−x+ + p−+x−, (8)

where p+− and p−+ represent the likelihood of dipoles switching from positive to negative and from negative to
positive, respectively. These likelihoods are given by

p+− =

∫ PI+ε

PI−ε
exp(−G(P )V/(kT ))dP

τ
∫∞
PI−ε

exp(−G(P )V/(kT ))dP
, p−+ =

∫ −PI+ε

−PI−ε
exp(−G(P )V/(kT ))dP

τ
∫ −PI−ε

−∞
exp(−G(P )V/(kT ))dP

. (9)

Details regarding the development of these equations is given in [4], and the resulting model is implemented in
Algorithm 2 with parameters as described in Table 1. Note that the calculation of these terms involves evaluating
complementary error (erfc) and exponential (exp) functions. This significantly reduces the computational
efficiency of the model when thermal relaxation is included.

# Inputs: E, Ec, wc, Nc, EI , wI , NI , PR, η, β, τ, ε, f , x+

# Output: P

For i = 0 . . . Nc − 1

PI [i] = PR − Ec[i]/η

End For

For k = 0 . . . length(E)− 1

P [k] = 0

For i = 0 . . . Nc − 1

For j = 0 . . . NI − 1

P−
min = (E[k] + EI [j])/η − PR

P+
min = (E[k] + EI [j])/η + PR

If Ec[i]− E[k]− EI [j] > 0

p−+ = (erfc((P−
min + PI [i]− ε)/β)−

erfc((P−
min + PI [i] + ε)/β))/

(τerfc((P−
min + PI [i]− ε)/β) + f)

Else

p−+ = 1/τ

End If

If Ec[i] + E[k] + EI [j] > 0

p+− = (erfc((PI [i]− ε− P+
min)/β)−

erfc((PI [i] + ε− P+
min)/β))/

(τerfc((PI [i]− ε− P+
min)/β) + f)

Else

p+− = 1/τ

End If

x+[i, j] =
x+[i, j] + p−+∆t

1 + ∆t(p+− + p−+)

P̄− = −
βexp(−((−PI [i]− ε− P−

min)/β)
2)

√
πerfc((PI [i] + ε+ P−

min)/β) + f
+ P−

min

P̄+ =
βexp(−((PI [i] + ε− P+

min)/β)
2)

√
πerfc((PI [i] + ε− P+

min)/β) + f
+ P+

min

P [k] = P [k] +wc[i]wI [j](x+[i, j]P̄+ + (1− x+[i, j])P̄−)

End For

End For

End For

Algorithm 2. Algorithm for the homogenized energy model which includes thermal relaxation.
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2. REPETITIVE OPERATIONS

In a first step to improve the efficiency of the model, several repetitive operations can be removed. For simplicity,
consider first the model with negligible relaxation. For each iteration and each mesh point,

P [k] = P [k] + wc[i]wI [j]

(
EI [j] + E[k]

η
± PR

)
(10)

must be calculated. Note that EI does not change through the course of the algorithm, and that dE is the same
for all mesh points in a given temporal iteration. Thus, each point in EI may be divided through by η as part
of algorithm setup, and E[k] divided just once per iteration (this division will later be removed). This process
transforms (10) into

P [k] = P [k] + wc[i]wI [j](EI [j] + E[k]± PR)

= P [k] + wc[i]wI [j]EI [j] + wc[i]wI [j]E[k]± wc[i]wI [j]PR.
(11)

Note that each mesh point adds three terms to P [k]. The first, wc[i]wI [j]EI [j], is independent of the input field,
and a scalar value for

∑
i

∑
j wc[i]wI [j]EI [j] may be calculated and stored a priori. The second does depend

on the input field, but only as a scalar multiple. As such, this term can be simplified to one multiplication
per temporal iteration by calculating the scalar term

∑
i

∑
j wc[i]wI [j] in advance. In actuality, we compute

(
∑

i

∑
j wc[i]wI [j]EI [j])/η and (

∑
i

∑
j wc[i]wI [j])/η, to combine this simplification with the division mentioned

above. The final term is ±wc[i]wI [j]PR, where the sign depends on the field level and the current state of the
material. This must still be done in iteration. However, we may pre-multiply either wc or wI by Pr, and remove
a multiplication from the loop. Further, the multiplication by wc[i] need not be performed for every mesh point,
but only once per row (only when i changes). This requires accumulating the wI [j] terms into a temporary
register, but this action is typically much more efficient than a multiplication. Incorporating these optimizations
into the negligible relaxation model yields Algorithm 3. While some of these changes would be done anyway
by an optimizing compiler (exactly which ones depends on the compiler), most compilers would not perform all
these steps, and making these changes can give a noticeable improvement in computational efficiency. We found
that Algorithm 3 runs almost twice as quickly as Algorithm 1 when both were compiled under the gcc compiler
with optimizations enabled. More performance comparisons may be found in Section 4.

# Inputs: E, Ec, wc, Nc, EI , wI , NI , PR, η, δ
# Output: P

# Initial Setup – not input field dependent

addit = 0

wsum = 0

For i = 0 . . . Nc − 1

For j = 0 . . . NI − 1

addit = addit+ wc[i]wI [j]EI [j]

wsum = wsum + wc[i]wI [j]

End For

End For

addit = addit/η

wsum = wsum/η

For j = 0 . . . NI − 1

wI [j] = wI [j]PR

End For

# Begin Iteration

For k = 0 . . . length(E)− 1

dE = E[k]− E[0]

P [k] = addit+ wsumdE

For i = 0 . . . Nc − 1

out = 0

For j = 0 . . . NI − 1

If EI [j] + dE + Ec[i]δ[i, j] > 0

δ[i, j] = 1;

out = out+ wI [j]

Else

δ[i, j] = −1
out = out− wI [j]

End If

End For

P [k] = P [k] + wc[i] out

End For

End For

Algorithm 3. Implementation algorithm for the Homogenized energy model with negligible thermal relaxation – repeated
operations removed.
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To remove repeated operations from the relaxation model, we do not calculate PI , P
−
min, and P+

min directly,
as in Algorithm 2. This change effects the equations for p−+, p+−, P̄−, and P̄+. For example,

p−+ =
erfc((P−min + PI [i]− ε)/β)− erfc((P−min + PI [i] + ε)/β)

τerfc((P−min + PI [i]− ε)/β) + f

=
1

τ

(
1− erfc((E[k] + EI [j]− Ec[i])/(ηβ) + ε/β)

erfc((E[k] + EI [j]− Ec[i])/(ηβ)− ε/β) + f

)
,

(12)

where the fact that f is essentially 0 has been used to remove an erfc calculation. We now see that division by
η and β can be done in advance (for all terms except E[k]) or once per temporal iteration (for E[k]). The same
holds for p+−. Further, let

P̄− = P̂− + P−min = P̂− +
E[k] + EI [j]

η
− PR,

P̂− = − βexp(−((Ec[i]− EI [j]− E[k])/(ηβ)− ε/β)2)√
πerfc((−Ec[i] + EI [j] + E[k])/(ηβ) + ε/β) + f

,

(13)

P̄+ = P̂+ + P+
min = P̂+ +

E[k] + EI [j]

η
+ PR,

P̂+ =
βexp(−((−Ec[i]−EI [j]− E[k])/(ηβ) + ε/β)2)√
πerfc((−Ec[i]− EI [j]− E[k])/(ηβ) + ε/β) + f

.

(14)

This allows η and β to be divided through in advance for these equations, and simplifies the polarization relation
to

P [k] = P [k] + wc[i]wI [j](x+[i, j]P̄+ + (1− x+[i, j])P̄−)

= P [k] + wc[i]wI [j]

(
x+[i, j]

(
P̂+ − P̂− + 2PR

)
+ P̂− +

(
EI [j]

η
− PR

)
+

E[k]

η

)
.

(15)

This in turn allows the wc[i]wI [j](EI [j]/η−PR) and wc[i]wI [j]E[k]/η to be calculated in advance, as was done with
the negligible relaxation model. Incorporating these optimizations yields Algorithm 4. Numerical experiments
demonstrate that Algorithm 4 runs about 15% to 20% faster than Algorithm 2 (again, more detailed results can
be seen in Section 4). However, more significant then the speed increase given by Algorithm 4 is the framework it
establishes for the more significant optimizations given in the next section. It should be noted that Algorithms 3
and 4 are equivalent (within numerical limits) to Algorithms 1 and 2, respectively; we have not lost any accuracy
by making these changes.

3. CALCULATION OF LIKELIHOODS AND AVERAGE POLARIZATIONS

Whereas some improvement in the relaxation algorithm was gained in the previous section, Algorithm 4 is still
many times slower than Algorithm 3. Much of this time is spent in calculating the erfc and exp functions,
which occur in the equations for p−+, p+−, P̂−, and P̂+. Examining the equations for p−+ and P̂−, the only
non-constant terms are E[k], EI , and Ec, and these always occur together in the same pattern. As such, we
write them as a function of a single variable

Eµ = E[k] + EI [j]− Ec[i]. (16)

This gives p−+ and P̂− as functions of a single variable, which are calculated as

P̂− = − βexp(−(−Eµ − ε)2)√
2erfc(Eµ + ε) + f

, (17)
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# Inputs: E, Ec, wc, Nc, EI , wI , NI , PR, η, β, τ, ε, f , x+

# Output: P

# Initial Setup – not input field dependent

ε = ε/β

For j = 0 . . . NI − 1

EI [j] = EI [j]/(ηβ)

End For

addit = 0

wsum = 0

For i = 0 . . . Nc − 1

Ec[i] = Ec[i]/(ηβ)

For j = 0 . . . NI − 1

addit = addit+ wc[i]wI [j]EI [j]

wsum = wsum + wc[i]wI [j]

End For

End For

addit = β addit− PRwsum

wsum = wsumβ

# Begin Iteration

For k = 0 . . . length(E)− 1

E[k] = E[k]/(ηβ)

P [k] = addit+ wsumE[k]

For i = 0 . . . Nc − 1

out = 0

For j = 0 . . . NI − 1

tmp = erfc(E[k] + EI [j]− Ec[i] + ε)

If Ec[i]− E[k]− EI [j] > 0

p−+ =
1

τ
(1− tmp

erfc(E[k] + EI [j]− Ec[i]− ε) + f
)

Else

p−+ =
1

τ
End If

P̂− = −βexp(−(−E[k]− EI [j] + Ec[i]− ε)2)√
π tmp+ f

tmp = erfc(−E[k]− EI [j]− Ec[i] + ε)

If Ec[i] + E[k] + EI [j] > 0

p+− =
1

τ
(1− tmp

erfc(−E[k]− EI [j]− Ec[i]− ε) + f
)

Else

p+− =
1

τ
End If

P̂+ =
βexp(−(−E[k]− EI [j]− Ec[i] + ε)2)√

π tmp+ f

x+[i, j] =
x+[i, j] + p−+∆t

1 + ∆t(p+− + p−+)

out = out+ wI [j](x+[i, j](P̂+ − P̂− + 2PR) + P̂−)

End For

P [k] = P [k] + wc[i] out

End For

End For

Algorithm 4. Implementation of the homogenized energy algorithm including thermal relaxation – repeated operations
removed.

If Eµ > 0

p−+ =
1

τ
Else

p−+ =
1

τ

(
1− erfc(Eµ + ε)

erfc(Eµ − ε) + f

)
.

(18)

This fact is illustrated in Figure 1. Notice that changing Ec, EI , or E[k] shifts the resulting likelihood function,
but does not otherwise change the shape of the function. If the solutions of (17) and (18) are known for all

Eµ ∈ lR, then the loop iterations need only look up the the values of p−+ and P̂−, rather than perform the complex

calculations on each iteration. The same process holds for p+− and P̂+, except that Eµ = −E[k]−EI [j]−Ec[i].
Of course, it is impossible to calculate and store in memory the solution of (17) or (18) for all Eµ ∈ lR.

However, it is possible to bound both the range and resolution needed for Eµ, thereby obtaining a vector that
can be calculated and stored in memory. To bound the range, one of two options may be used. First, if the input
field level is bounded by an arbitrary number, a minimum and maximum possible Eµ may be calculated. To
do this, we note that the minimum and maximum values of Ec and EI are known from the quadrature points.
The minima and maxima can be added together to bound Eµ. A second approach to bound Eµ is to recall that
the distribution for Ec is bounded by a decaying exponential. As such, for Eµ > Ec[Nc − 1], we may assume
the distribution is close enough to 0 to be treated as such, and therefore all dipoles are oriented in the positive
direction. Likewise, for values of Eµ < −Ec[Nc − 1], all dipoles are oriented in the negative direction. When all

6
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Figure 1. (a) Shift caused by a different coercive field value with 0 applied field. (b) Shift caused by different applied
fields with Ec = 0.

dipoles line up uniformly, the material acts as a single domain and behaves in a linear fashion as given by the
kernel (1). Thus, we only need to know the values of p−+ and P̂− for Eµ ∈ [−Ec[Nc − 1], Ec[Nc − 1]]. Values

outside this range will simply give 0 for P̂− and P̂+ and either 0 or 1/τ for p−+ and p+− (depending on whether
the out of range value is positive or negative). The first approach yields a slightly simpler final model, but
places an additional constraint on the input field level. The second approach requires no additional constraints,
but does require checking for out-of-bounds values (which can never occur in the first approach). To maintain
generality, the second approach is employed here, with one modification. To reduce the number of out-of-bounds
calculations (at the expense of memory usage), we allow Eµ ∈ [−Ec[Nc−1]−EI [NI−1], Ec[Nc−1]+EI [NI−1]].
As mentioned above, all the points just added to the range of Eµ will give repetitive values for the likelihoods
and average polarizations. However, given an E[k] and Ec[i], we may now iterate over all values of EI , checking
only the first for an out of bounds condition. All other values that do not give Eµ ∈ [−Ec[Nc − 1], Ec[Nc − 1]]
will receive the same out of bounds values as before, without additional conditional logic to check their bounds.

We have limited the range of Eµ that must be considered, but that by itself still gives infinitely many possible
values. The resolution of Eµ must now be set. This problem should be familiar to anyone who has designed
numerical methods. The higher the resolution, the more accuracy is obtained, but the more memory is needed.
If the resolution is set arbitrarily, a very large amount of memory is needed to give accurate results (potentially

many tens to a couple hundred thousand points or more for each of p−+, p+−, P̂−, and P̂+). This is unacceptably
large for most real-time applications. To improve this, we must restrict the quadrature method over EI to one
of the Newton-Coates formulas (to maintain the even number of quadrature points, it must be an even degree
formula such as trapezoid or Simpson’s 3/8 rule over an odd number of intervals). This restriction yields equally
spaced quadrature points. The resolution can now be set as some positive integer divisor r of the EI stepsize.
Quantization error will still be introduced when Ec and E[k] are not zero; however, no additional quantization
is added by iterating over EI . This reduces the amount of error significantly. While the exact amount of error
depends on the parameters being used, in test cases we’ve run less than a thousand points need to be calculated
and stored for p−+, p+−, P̂−, and P̂+ in order to limit the increased quantization error to values well below
those introduced by data collection and quadrature method. Two such test cases are explored in Section 4.

The final relaxation algorithm, including the optimizations described in this section, is given in Algorithm 5.
A few things should be noted. No exp or erfc functions need to be computed in real time – all can be calculated
and stored in advance. In addition, the number of additions, subtractions, multiplications and divisions needed
per iteration has been reduced. Experiments detailed in Section 4 indicate this algorithm runs as little as 1.6
times slower than the optimized negligable relaxation model (Algorithm 3), although the exact difference does
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# Inputs: E, Ec, wc, Nc, EI , wI , NI , PR, η, β, τ , ε,
# f , x+, r

# Output: P

# Initial Setup – not input field dependent

ε = ε/β

addit = 0

wsum = 0

For i = 0 . . . Nc − 1

For j = 0 . . . NI − 1

addit = addit+ wc[i]wI [j]EI [j]

wsum = wsum + wc[i]wI [j]

End For

End For

addit = addit/eta− PRwsum

wsum = wsum/eta

estep = (EI [1]− EI [0])/r

Nr = NI r

If Ec[Nc − 1] > EI [EI − 1]

increase = ceil((Ec[Nc − 1]− EI [NI − 1])/estep) +Nr

Else

increase = Nr − floor((EI [NI − 1]− Ec[Nc − 1])/estep)

End If

step = estep/(ηβ)

Nµ = 2 increase+Nr

eff = EI [0]/(ηβ)

For j = 0 . . . Nµ − 1

Eµ = eff − step increase+ step j

tmp− = erfc(Eµ + ε)

tmp+ = erfc(−Eµ + ε)

If Eµ > 0

p−+[j] = 1/τ

p+−[j] = (1− tmp+/(erfc(−Eµ − ε) + f))/τ

Else

p−+[j] = (1− tmp−/ (erfc(Eµ − ε) + f))/τ

p+−[j] = 1/τ

End If

P̂−[j] = −βexp(−(Eµ + ε)2)/(
√
π(tmp− + f))

P̂+[j] = βexp(−(−Eµ + ε)2)/(
√
π(tmp+ + f))

End For

# Begin Iteration

For k = 0 . . . length(E)

P [k] = addit+ wsumE[k]

kshift = E[k]/estep

For i = 0 . . . Nc − 1

ishift = Ec[i]/estep

j− = round(increase+ kshift − ishift)

If j− < 0 Then j− = 0 End If

If j− +Nr ≥ Nµ Then j− = Nµ −Nr − 1 End If

j+ = round(increase+ kshift + ishift)

If j+ < 0 Then j+ = 0 End If

If j+ +Nr ≥ Nµ Then j+ = Nµ −Nr − 1 End If

out = 0

For j = 0 . . . NI − 1

j− = j− + r

j+ = j+ + r

x+[i, j] =
x+[i, j] + p−+[j−] ∆t

1 + ∆t(p−+[j−] + p+−[j+])

out = out+ wI [j](x+[i, j](P+[j+]− P−[j−] + 2PR)+

P−[j−])

End For

P [k] = P [k] + wc[i] out

End For

End For

Algorithm 5. Improved algorithm for the homogenized energy model with thermal relaxation.

depend on the parameters input and the compiler/hardware being used. Regardless, this is a vast improvement
over the 100 times slower execution exhibited by Algorithm 4. It should also be noted that, while the EI

quadrature has been constrained to a Newton-Coates formula, Ec has not had any constraints placed on it,
other than those mentioned in Section 1. Finally, note that the choice of constraining and working along EI is
arbitrary. An analogous model could be developed with constraints placed on Ec instead.

4. PERFORMANCE AND ERROR COMPARISONS

The exact performance of Algorithm 5 depends on the hardware and model parameters in use. Table 2 provides a
performance comparison for an example ferroelectric material (from [3]). All five algorithms were tested with the
same input of approximately 15000 field points, and used Simpson’s 3/8 rule on 21 quadrature intervals in both
the Ec and EI distributions (64 quadrature points). Models were compiled and run on two different platforms
to compare the effects of different architectures. All algorithms were implemented as c language MATLAB mex
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Linux Sun

seconds relative time seconds relative time
Negligible relaxation

Original (Algorithm 1) 2.2 1.8 13.1 1.6
Optimized (Algorithm 3) 1.3 1 8.3 1

Thermal relaxation

Original (Algorithm 2) 153.1 122.5 318.3 38.4
Intermediate (Algorithm 4) 127.5 102.0 239.3 28.9
Optimized (Algorithm 4) 2.1 1.7 13.1 1.6

Table 2. Execution time of five algorithms presented in this paper. Times are given for two different architectures.

files, and run from that environment. The first test machine used was a 1.7 GHz Pentium IV Xeon running Red
Hat Enterprise Linux Workstation 3. Code on this machine was compiled with gcc 3.2.3. The other test machine
was a Sunblade 100 with a 500 MHz Sparc processor. The Sun Workshop Compiler version 5.0 was used on this
machine. For simplicity, these machines are referred to as linux and sun in the table.

Table 2 makes it clear that Algorithm 5 is far superior computationally to a direct implementation of the
homogenized energy model with thermal relaxation, as given in Algorithm 2. The test detailed in the table gives
almost a 25 times improvement on the RISC-based SPARC processor, and over a 70 times improvement on the
more CISC-designed Pentium IV. Tests with other parameters have yielded slightly less dramatic differences, but
still give marked improvement. For example, the same Pentium IV machine gave a 25 times improvement for
the computation speed of Algorithm 5 when run on an example ferromagnetic material (from [5]). The reason
for this difference is believed to be related to the internal computer architecture, but is not yet fully understood.

As noted before, the improved run time of Algorithm 5 is not free; increased quantization error has been in-
troduced into the polarization/magnetization calculations. However, this quantization error is quite manageable.
Figure 2 illustrates the input, output, and difference between the original relaxation algorithm (Algorithm 2) and
the optimized one presented in this paper (Algorithm 5) for r = 10, and Table 3 gives the maximum and root
mean square (RMS) error for r values between 1 and 64. Notice that in all cases, the maximum error introduced
by the optimizations is less than 0.6% (1 part in 167) of the saturation polarization or magnetization. Further,
note that error is inversely proportional to r. Thus, error can be roughly halved by doubling r. This should allow
the faster algorithm to perform to almost any desired level of accuracy (when compared to the original model).
A larger r has very little effect on the computational speed of the algorithm, as it only requires accesses of larger
constant arrays (p−+, p+−, P̂−, and P̂+). No significant computation difference was seen for r values of 1 to
16 in the ferroelectric example, and no significant difference was seen for any r in Table 3 for the ferromagnetic
example. However, the size of likelihood and average polarization/magnetization arrays is proportional to r, so
more memory must be utilized for finer resolutions, but is still fairly small for moderate r. With r = 1, only 502

Ferroelectric Example Ferromagnetic Example

r max error RMS error max error RMS error
1 4.42× 10−4 0.13% 1.24× 10−4 0.035% 2007 0.44% 994 0.22%
2 9.97× 10−4 0.28% 1.97× 10−4 0.056% 2668 0.58% 1111 0.24%
4 4.74× 10−4 0.14% 9.15× 10−5 0.028% 1147 0.25% 502 0.11%
8 2.64× 10−4 0.075% 4.72× 10−5 0.013% 561 0.12% 244 0.053%

10 1.95× 10−4 0.056% 3.73× 10−5 0.011% 432 0.094% 194 0.042%
16 1.47× 10−4 0.042% 2.31× 10−5 0.0066% 320 0.070% 121 0.026%
32 9.30× 10−5 0.027% 1.27× 10−5 0.0036% 182 0.038% 61.3 0.013%
64 6.73× 10−5 0.019% 7.78× 10−6 0.0022% 136 0.030% 33.0 0.0072%

Table 3. Error introduced by Algorithm 5, when compared to the original Algorithm 2. Percentages are of saturation
polarization/magnetization.
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Figure 2. Numerical simulations showing accuracy of thermal relaxation algorithm presented in this paper versus the
standard algorithm from the literature. Note difference in scales between results plot and error plot.
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values need to be stored for the ferroelectric example (64 quadrature points for each of Ec and EI). At r = 10,
this value is up to 5006 values for each of the four arrays. The ferromagnetic example benefits from a maximum
Ec less than the maximum EI and needs only 152 values for r = 1 and 1514 values for r = 10 (again with 64
quadrature points for each of Ec and EI). This suggests that memory (and in some cases speed as well) may
be optimized in the ferroelectric example by optimizing along Ec instead of EI (as is mentioned at the end of
Section 3), but this is not further explored here. In either example, this level of memory is quite obtainable in
most modern microprocessor or gate array devices.

The error figures were obtained by comparing the same quadrature routines in both Algorithms 2 and 5.
While this provides a good measure for the quantization error introduced by the changes made herein, it does
tend to ignore the biggest drawback to Algorithm 5: the restriction to Newton-Coates quadrature on the EI

distribution. The dominant factor influencing error is often the quadrature method in use. This is especially
true around zero applied field where the accuracy is often most desired. Care in choosing a quadrature method
is a general numerical necessity, and is not discussed in detail here. However, we note that the speed advantage
of Algorithm 5 allows many more quadrature intervals to be considered while still giving a faster execution
speed than Algorithm 2. More quadrature intervals do require more memory, and applications that need very
high accuracy with memory constrains in the low kilobytes may need to stop their optimizations at Algorithm 4
(which uses less memory than Algorithm 2). For most applications, however, the accuracy lost in Algorithm 5 by
requiring Newton-Coates quadrature may be recovered by increasing the number of quadrature intervals, while
still maintaining a faster execution speed over the origin relaxation algorithm.
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